
Learning a Knowledge Base of Ontological Concepts
for High-Level Scene Interpretation

Johannes Hartz
Cognitive Systems Laboratory

Department of Informatics
Universität Hamburg

hartz[at]informatik.uni-hamburg.de

Bernd Neumann
Cognitive Systems Laboratory

Department of Informatics
Universität Hamburg

neumann[at]informatik.uni-hamburg.de

Abstract

Ontological concept descriptions of scene objects and
aggregates play an essential role in model-based scene in-
terpretation. An aggregate specifies a set of objects with
certain properties and relations which together constitute
a meaningful scene entity. In this paper we show how on-
tological concept descriptions for spatially related objects
and aggregates can be learnt from positive and negative ex-
amples. Our approach features a rich representation lan-
guage encompassing quantitative and qualitative attributes
and relations. Using examples from the buildings domain,
we show that learnt aggregate concepts for window ar-
rays, balconies and other structures can be successfully em-
ployed in the conceptual knowledge base of a scene inter-
pretation system. Furthermore we argue that our approach
can be extended to cover ontological concepts of any kind,
with very few restrictions.

1 Introduction

In computer vision, growing interest in artificial cog-
nitive systems has brought about increased efforts to ex-
tend vision systems towards capabilities for high-level vi-
sion or scene interpretation. These are terms commonly
used for vision tasks going beyond single-object recogni-
tion, such as inferring the existence and location of oc-
cluded aggregate parts from already observed ones. As ex-
plicated in [1], scene interpretation can be modelled for-
mally as a knowledge-based process. The burden of the in-
terpretation process lies on the conceptual descriptions, and
the richer a domain, the more demanding is the task of de-
signing these descriptions. It is foreseeable that designing
knowledge bases for larger applications using a handcraft-
ing approach will be prohibitively costly and error-prone.
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We therefore started to investigate supervised learning in the
eTRIMS project, with the belief that in the long run high-
level vision can only be achieved by leading the system
through a supervised learning phase where the concepts for
a particular domain are acquired based on examples. Dif-
ferent from a probabilistic approach (e.g. [5], [6], [7]), we
chose the representation language used in our scene inter-
pretation system SCENIC [8], [21] which represents vari-
ability in terms of ranges with crisp boundaries or enumer-
ation of possible values. Apart of the fact that this way we
can evaluate the learnt concepts by applying them to real-
world scenes through the SCENIC system, this approach
also allows us to invoke and extend well-known learning
methods from symbolic AI.
Our approach is in the spirit of the seminal work of Win-
ston [17] who showed how spatial structures in the blocks-
world could be learnt. We rephrase this problem for a more
general domain by using the Version Space Learning frame-
work.
Our main contributions are

• developing a description language for spatial object ar-
rangements,

• applying the learning procedure to a concrete real-
world domain, and

• evaluating the results in an operational scene interpre-
tation system.

In the next section we present a strong motivation to choose
Mitchell’s Version Space Learning framework [2], [3] for
concept learning aimed at machine interpretation. Then
we present the concept language, which is designed to al-
low realistic concept descriptions. Section 3 deals with the
problem of hypothesis selection which arises when several
concept descriptions correctly cover all positive and neg-
ative examples. This is the rule rather than the exception
in Version Space Learning. In Section 4 we argue that a
comprehensive knowledge base of ontological concepts of
any kind can be learnt in a Version Space framework, given



general-specific orderable concept attributes and a finite set
of concept relations. We also introduce the term concept
differentiation as a quality measure for a conceptual knowl-
edge base and present an approach for learning maximally
diverse concepts. In Section 5 we present experimental re-
sults for the application domain of building facades. Section
6, finally, presents conclusions and an outlook on further
work.

Figure 1. Training image

2 Version Space Learning of ontological
concepts

2.1 Inductive bias and interpretation properties

For every form of Inductive Learning a resulting concept
hypothesis h has to approximate the correct output classifi-
cation h(e) ↔ c(e), even for examples that have not been
shown during training. This property is commonly referred
to as the Inductive Leap. Without any additional assump-
tion, this task cannot be solved [4], so the need of an in-
ductive bias is at the heart of any Inductive Learning pro-
cess. In fact, the inductive bias is the necessary assump-
tion which possible target concept to prefer over another (a
classic example is Occam’s Razor / MDL). But despite the
learning process’ need of an inductive bias, we also have to
consider our general aim of concept learning for machine
interpretation. For the generic interpretation process to be
able to perform as flexible as possible, we do not want to
bias the concept learning process beyond the intrinsic need.
Version-Space Learning lends itself to this task perfectly.
The Version-Space learning process is bias-free, because
all hypotheses consistent with the training data are induced
(2.2). An inductive bias is introduced only through the con-
cept language, not the learning procedure. If the concept
language allows any subsets of training instances I1 ⊂ I
and I2 ⊂ I to be generalized to the same hypothesis h, than
the language is biased. By employing Version Space Learn-
ing we have full control over this inductive bias. Our con-
cept language is presented in section 2.3. Section 3 shows
how we can exploit the fact that Version Space Learning is
bias-free additionally to derive a confidence criterion for
later generic machine interpretation.

2.2 Learning Procedure

Version Space Learning is a framework for supervised
concept learning, i.e. learning by means of positive and
negative examples given by a teacher. During the learning
process, the space of possible concept hypotheses V S is
implicitly represented through an upper and a lower bound
on the generality of the hypotheses h ∈ V S. The General
Boundary GB contains all maximally general members of
V S, the Specific Boundary SB contains all maximally spe-
cific members of V S. GB and SB completely determine
V S as the set of hypotheses h being more-general-or-
equal to an element of SB and more-specific-or-equal
to an element of GB.
Initially, GB includes all possible training examples and
SB excludes all possible training examples. As a positive
example e+ is presented, SB has to be generalised to in-
clude e+. As a negative example e− is presented, GB must
be specialised to exclude e−. Both, generalisation and spe-
cialisation steps, are chosen to be minimal in the sense that
as few instances as possible besides e+ or e− are included
or excluded, respectively. In contrast to minimal generalisa-
tions, the minimal specialisation of a hypothesis h leads to a
set of hypotheses {h′, h′′, ...}, at least for non-trivial cases.
For the sake of compactness, more elaborated representa-
tion schemes and training procedures ([9], [10], [11]) for
Version Space Learning are omitted here. Theoretic consid-
erations for inductive concept learning can be found in [12].
The representation of the Version Space by the two bound-
aries, together with an appropriate revision strategy, allows
every hypothesis that is consistent with the training data to
be generated. Note, that what is required in order to realise
this type of representation is a concept language that con-
stitutes concepts which satisfy the properties of a concept
lattice ([13]), i.e. a partial general-specific ordering can be
imposed on them.
For the application to the eTRIMS domain, annotated im-
ages of building facades are used as input for the learning
process. In these images meaningful scene objects have
been segmented and labeled (Fig. 1). Scene aggregates are
specified solely through a set description of their parts. For
the actual training process we use a concept language with
attribute types presented in the next section. In Section 5.2
you find a full example of a learnt concept.

2.3 Representation

In this section we describe the attribute types used to for-
mulate concept descriptions. We also specify generalisa-
tion and specialisation criteria which can be used to deter-
mine their general-specific ordering (denoted ≤ and ≥). A
methodology to compute minimal concept attribute general-
isations (denoted ↑) is presented, which is needed to extend
attributes of concept hypotheses h ∈ SB to cover attribute



values of positive examples e+
i . Specialisation methods (de-

noted ↓) to exclude attribute values of negative examples e−i
from attributes in concept hypotheses h ∈ GB are also pre-
sented.

2.3.1 Symbol set type

The symbol set type describes disjunctive symbolic or dis-
crete numerical attribute values.

Example: Colour = {Red, Green, Blue}
• General-specific ordering of symbol sets S1 and S2 of

disjoint symbols {s1, s2, ...}:
Iff S1 ⊇ S2: S1 ≥ S2

• Obtaining symbol set S3 from S1 ∈ h ↑ S2 ∈ e+:
S3 = S1 ∪ S2

• Obtaining symbol sets Si from S1 ∈ h ↓ S2 ∈ e−:
∀si ∈ S1 ∧ si ∈ S2 : Si = S1 \ {si}

2.3.2 Range type

The range type describes a convex range of metric attribute
values. Specialized ranges can have (half) open boundaries
due to the exclusion of discrete values. Ranges can contain
symbolic infinity values -INF and INF.

Example: Aggregate Height = [160..INF]

• General-specific ordering for ranges R1 = [l1..u1] and
R2 = [l2..u2]:
Iff R1 ⊇ R2: R1 ≥ R2

• Obtaining range R3 from R1 ∈ h ↑ R2 ∈ e+:

– Iff l2 < l1: R3 = [l2..u1]
– Iff u2 > u1: R3 = [l1..u2]
– Iff l2 < l1 ∧ u2 > u1: R3 = [l2..u2]

• Obtaining range R3 from R1 ∈ h ↓ R2 ∈ e−:

– Iff u1 > u2 ∧ l1 ≤ u2: R3 =]u2..u1]
– Iff l1 < l2 ∧ u1 ≥ l2: R3 = [l1..l2[

Note that theoretically both cases of specialisation may be
applicable at the same time, but because the Version Space
enforces all hi ∈ GB to be more general than h ∈ SB, at
most one of the two possible specialisations is valid.

2.3.3 Composition type

The composition type describes
1. the number of aggregate parts by the range attribute N ,
and
2. the different part types by the symbol set attribute TN ,
and
3. the number of parts of each type by the subordinate range
attributes T1..n in TN .

1The actual values of nl and nu depend on preceding generalisation or
specialisation steps

N =[MAXi∈n(li) ≤ nl ≤ Σi∈n(li)..
MINi∈n (ui) ≤ nu ≤ Σi∈n(ui)]1

TN = {T1 = [l1..u1], T2 = [l2..u2],..., Tn = [ln..un]}
Example: Has − Parts = [3..6]

Triangle = [2..3]
Square = [1..3]

• General-specific ordering for compositions C1 and C2:
Iff N1 ≥ N2 ∧ ∀Ti ∈ TN2 ≥ Ti ∈ TN1: C1 ≥ C2

To generalise the compositional properties of an aggregate,
all ranges in the composition can be treated individually.

• Obtaining composition C3 from C1 ∈ h ↑ C2 ∈ e+:
N3 = N1 ↑ N2, TN3 = TN1,
∀Ti ∈ TN3 = Ti ∈ TN1 ↑ Ti ∈ TN2

When specialising the composition we have to consider de-
pendencies between the total number of parts and the num-
ber of parts per type explicitly.

• Obtaining C3 from N1 ∈ h ↓ N2 ∈ e− might lead
to the same specialisation step for subranges Ti in set
TN3:

– Iff nu1 > nu2 ∧ nl1 ≤ nu2:
N3 = ]nu2..nu1], TN3 = TN1

– Iff nl1 < nl2 ∧ nu1 ≥ nl2:
N3 = [nl1..nl2[, TN3 = TN1,
∀Ti ∈ TN3: Ti = [li..MIN(ui, nl2)[

• Obtaining C3 from Ti ∈ TN1 ∈ h ↓ Ti ∈ TN2 ∈ e−

might lead to a specialisation step of N3:

– Iff u1i > u2i ∧ l1i ≤ u2i:
N3 = [MAX(nl1, Σi∈n(l3i))..nu1],
TN3 = TN1, ∀Ti ∈ TN3: Ti = ]u2i..u1i]

– Iff l1i < l2i ∧ u1i ≥ l2i:
N3 = [nl1..MIN(nu1, Σi∈n(u3i))],
TN3 = TN1, ∀Ti ∈ TN3: Ti = [l1i..l2i[

2.3.4 Predicate type

The predicate type represents a freely definable n-ary
boolean function over part attribute values. Predicates
p1..pn are organised in a set P .

Example: Predicates = {FuzzyEqual(Parts−Area)}
Note that since predicates constrain attribute values, they
behave contrarily to symbol sets!

• General-specific ordering for predicates in sets P1 and
P2:
Iff P1 ⊆ P2: P1 ≥ P2

• Obtaining predicate set P3 from P1 ∈ h ↑ P2 ∈ e+:
P3 = P1 ∩ P2

• Obtaining predicate set P3 from P1 ∈ h ↓ P2 ∈ e−:
∀pi /∈ P2 : Pi = P1 + pi



2.3.5 Spatial relation type

Spatial relations are learnt between the parts of an aggre-
gate and between the aggregate and possible sourrounding
entities, which might be scene objects or other aggregates.
To represent the spatial relation between two entities, we
employ an 8-neighbourhood to obtain a finite set of possi-
ble relations. For this purpose the bounding box of an ob-
ject induces the eight octants of its neighbourhood: {Left,
AboveLeft, Above, AboveRight, Right, BelowRight, Be-
low, BelowLeft}. To quantise spatial relations we use the
Euclidean distance d between the related objects’ bound-
aries.

Example: SR = {(triangle003) Above [45..45] (Box012)}2

Each spatial relation is a 4-tuple. Spatial relations l1..ln are
organized in a set L and are treated like predicates.

li∈n = (object p1, relation r, object p2, range d)
L = {l1, l2, .., ln}
In general, for object p1 and relation type rj several re-
lations li = (p1, rj , pi, di) involving different objects pi

may be possible. The relation minimising di is called the
neighbour relation. Neighbour relations are a specialisa-
tion of spatial relations, hence spatial relations form their
own general-specific hierarchy. This hierarchy must be con-
sidered when performing generalisation and specialisation
steps on spatial relations.
• General-specific ordering for spatial relations in sets

L1 and L2:
Iff L1 ⊆ L2 ∧ ∀li ∈ L1 ≥ li ∈ L2 : L1 ≥ L2

• Obtaining spatial relation set L3 from L1 ∈ h ↑ L2 ∈
e+:
L3 = L1 ∩ L2, ∀li ∈ L3 = li ∈ L1 ↑ li ∈ L2

• Obtaining spatial relation set L3 from L1 ∈ h ↓ L2 ∈
e−:

– L3 = L1, ∀li ∈ L3 = li ∈ L1 ↓ li ∈ L2

– ∀li /∈ L2 : L3 = L1 + li, di = [0..INF]3

Note that the particular spatial relation type presented here
is just one example of how to impose a symbolic relation.
Any other finite set of symbolic relations could be treated
accordingly. The spatial relation type includes a range at-
tribute to represent the parts distance. In general, a relation
can be enhanced with concept attributes of any type, how-
ever the specialization methodology needs to be enhanced
then, too.

3 Hypothesis selection

After the learning process has been conducted, the
boundary sets SB and GB contain the minimally and the

2For a textual representation of spatial relations, arbitrary object indices
are kept to disambiguate relational structures

3The range is opened maximally to satisfy the requirement for minimal
specialisation

maximally generalised concept hypotheses over all training
examples. The space of applicable hypotheses V S covers
these two boundary sets and the space in between them.
In principle, one could use any member of V S as a clas-
sifier. To use the whole V S as a classifier, one could em-
ploy a voting scheme. For high-level scene interpretation,
however, we are interested in concise concept descriptions
which can be included in the conceptual knowledge base of
the interpretation system. Therefore we define additional
learning objectives by which to select concept hypotheses
from a learnt V S.

3.1 Learning objectives

Assuming a set of positive and negative examples as
training data we propose two disjoint learning objectives:

For a given set of training examples we want to learn a
concept description

1. which is the most specific representation of train-
ing example properties introduced through positive
examples. We can assign this concept hypothesis a
high confidence, because it has strong support from
former experience.

2. which is the most general representation of training
example properties introduced through positive ex-
amples, but still excludes all negative training exam-
ples. This concept hypothesis only has weak support
from former experience, but could not be proven
wrong. Hence it has a low confidence.

These learning objectives yield knowledge acquisition
which (1) spans the whole space of applicable hypotheses
and therefore allows most comprehensive aggregate recog-
nition in the interpretation process, and (2) introduces a
confidence measure we can use to evaluate the intepretation
result.

3.2 Selection methods

Based on the learning objectives presented above, we
now need means to select concept hypothesis from a learnt
Version Space V S. Trivially, hypothesis h ∈ SB satisfies
our first learning objective and can be chosen for interpreta-
tion purposes. It represents the concept description with the
highest confidence hs.
Every hypothesis hi ∈ GB satisfies our second learning
objective. If the set GB has converged to one concept hy-
pothesis, this hypothesis is chosen as most general concept
description hg . If GB contains multiple concepts (which
is likely considering [14]), we need a selection method to
choose a concept hypothesis from GB. But since the hy-
potheses h ∈ GB cannot be ordered in a general-specific



manner, there is no preference measure to choose a concept
hypothesis that can be derived from our learning objective.
Several approaches can be considered to overcome this se-
lection problem:

1. A concept hypothesis can be chosen randomly from
GB, as proposed in [15], [16].

2. The minimum amount of attribute specialization can
be considered to be the selection criterion. This cri-
terion is not applicable for concept languages with a
mixture of symbolic and metric attribute types, be-
cause these types cannot be compared with regard to
the amount of specialisation.

3. The logical conjunction of all hi ∈ GB yields a single
hypothesis hg . Hypothesis hg is the most general con-
cept hypothesis excluding negative examples through
all discriminating attributes. Hypothesis hg is defined
for any state of GB, hence it can be chosen as concept
hypothesis.

Since every form of hypothesis selection is in fact a form of
biasing, we consider the last approach to be the soundest,
because it emphasises all attributes that have been used to
discriminate negative examples. Approach 1. and 2. (if
applicable) lead to an arbitrary selection of discriminating
attributes. A refinement of selected concepts is possible for
all above approaches via feedback learning as presented in
Section 5.3.

4 Building a Knowledge Base of Ontological
Concepts for Interpretation

As we have learnt two different concept descriptions for
the training set of every ontological entity, we introduce
these two descriptions into the knowledge base of our scene
interpretation system and relate them taxonomically (hs is a
specialization of hg). The two concept descriptions give us
means to recognize instances of the target concept in every
possible extent covered by the positive and negative train-
ing examples. Additionally, we can give a confidence value
for each recognition. This confidence value is based on the
degree of containedness / the distance between the concept
description of the recognized instance and hs and hg, re-
spectively.
So far, we have considered learning and hypothesis se-
lection with the goal of establishing concept descriptions
for individual entities. But for scene interpretation and
many other applications, we want to learn a comprehensive
knowledge base with ontological concepts for different real-
world entities.
Generally, an ontological concept consists of concept at-
tributes and relations to other concepts. Concept attributes

can be represented and learnt as shown in 2.3 - more elab-
orated attribute types can also be employed, as long as a
general-specific ordering can be imposed. Mandatory rela-
tions between ontological concepts are compositional rela-
tions and taxonomical relations. The composition of con-
cepts is learnt as presented in 2.3.3. Taxonomical relations
between concepts can be inferred after learning by apply-
ing the general-specific ordering methodology to concepts
(Section 2.3). Further symbolic relations between concepts
can be represented and learnt analogous to the spatial rela-
tion type presented in 2.3.5. Any symbolic relation can be
enriched with further attribute types as mentioned above.
Since our learning approach covers all properties of indi-
vidual ontological concepts, learning a set of these concepts
yields a comprehensive ontological knowledge base. Each
concept in this knowledge base has a most specific and a
most general representation, each with a set of attributes
and relations to other concepts. The knowledge base can be
exploited through any form of ontology reasoning, which
is typically performed using description logics and a con-
straint system solver.
For our application to the eTRIMS domain, the learnt con-
cepts in the knowledge base are related compositionally,
taxonomically and through spatial relations (Table 1, Fig-
ure 2). An additional composition attribute is kept to trace
transitive compositional relations (e.g. object o1 is part of
o3 through being part of o2), which simplifies interpretation.
The interpretation process is performed by the SCENIC sys-
tem.
An important property of ontological concepts is disjoint-
ness. To test two concepts for disjointness one can sim-
ply construct the logical conjunction of these concepts and
check the resulting concept for consistency. If the result-
ing concept description is inconsistent, the basic concepts
are disjoint. We employ disjointness of SB concept hy-
potheses for our approach to concept differentiation, which
is presented in the next section.

4.1 Concept differentiation

Learnt concept descriptions must be evaluated with re-
spect to existing concepts. Intuitively, we want to make
sure that the conceptual descriptions in the knowledge base
do not only reflect arbitrarily chosen positive and negative
examples but are also constructed to differentiate between
each other. We call this quality criterion concept differenti-
ation.
Fortunately, the concept learning process can be controlled
to yield a knowledge base of maximally differentiated con-
cepts by selecting training examples in a prudent way. Note
that positive examples represent information about intra-
concept similarities, whereas negative examples represent
information about inter-concept differentiation. Hence to
achieve a set of maximally differentiated concept descrip-



tions, one can employ all positive examples of a given con-
cept as negative examples for all other disjoint concepts.
Furthermore one can employ any given ontological concept
as negative example for any other disjoint ontological con-
cept.4 Since the second learning objective presented leads
us to select the most general concept hypothesis as the logi-
cal conjunction from the general boundary set GB, all inter-
concept discriminating attributes introduced through nega-
tive examples will be represented. This provides a theoretic
foundation for learning a knowledge base of maximally dif-
ferentiated concept descriptions.

5 Experimental results

5.1 Application to the eTRIMS domain

In the context of the eTRIMs project, the concept learn-
ing approach presented here has been applied to the domain
of terrestrial views of building facades. Typical aggregates
of this domain are window arrays (consisting of aligned and
regularly spaced windows as parts), balconies (consisting of
railing, door and optional windows) or entrances (consisting
of a door, stairs and ground).
To conduct the actual training sequence, positive learning
examples are directly extracted from annotated pictures. An
enriched instance description of the positive example is gen-
erated from the information contained in the annotation of
the aggregate parts.
We automatically generate negative examples from anno-
tated pictures by selecting random sets of parts. To be pre-
cise, we select a negative example N as any set of annotated
objects that is not a subset or equal to a positive example
P in the same picture. This requires, of course, that posi-
tive examples are annotated to their maximal extent. Fol-
lowing Winston’s insight about ”near-miss” examples [17],
one can assume a negative example N to be most useful
if it differs from a positive example P as little as possible.
Hence an ideal negative example differs from a positive ex-
ample only in one discriminating attribute. This kind of
negative example leads to the generation of a most general
concept description which is only specialised to exclude the
attribute value of the discriminating attribute in the nega-
tive example. A straight-forward approach to generate neg-
ative examples with near-miss properties is to define a dis-
tance measure d for N and P , to randomly generate possible
training examples N1..Nn and finally choose the examples
minimizing d. This approach is computationally inexpen-
sive as the distance measure from Ni to P is available at
nearly no cost (compared to the cost of the training proce-
dure). Hence a large number of negative examples can be
evaluated for their near-miss properties.
For a typical training sequence, about 10 to 15 positive ex-

4A formal description of specialization through concepts is omitted, but
very similar to specialization through examples (2.3)

amples are used. Since negative examples have stronger
concept differentiation qualities, we apply about 100 to 300,
keeping a ratio between positive and negative examples of
1/10 to 1/20.

5.2 Evaluation

As an example result of the learning process we present
the General Boundary conjunction hypothesis hg for the ag-
gregate ”Window Array”, learnt from 13 annotated positive
examples and 260 generated negative examples.

Table 1. Aggregate "Window Array"

Size and configuration

Aggregate Width = ]549..INF] cm

Aggregate Height = [0..200[ cm

Parts Width = [0..INF] cm

Parts Height = [0..INF] cm

Parts Top-Left-X Variability = ]131..INF] cm

Parts Top-Left-Y Variability = [0..33[ cm

Parts Bottom-Right-X Variability = ]115..INF] cm

Parts Bottom-Right-Y Variability = [0..9[ cm

Composition

Has-Parts = [3..INF]

window = [3..INF]

door = [0..0]

Part-Of = [1..1]

facade = [0..1]

roof = [0..1]

Symbolic attributes

Shape = { Elongated-X }

Attribute predicates

Fuzzy-Equal (top-left-y)

Fuzzy-Equal (bottom-right-y)

Fuzzy-Equal (parts-height)

Fuzzy-Equal (parts-dist-x)

Value-Equal (parts-type)

Internal spatial relations

(window000) LeftNeighbourOf [132..324] cm (window001)

(window000) LeftOf [339..649] cm (window002)

(window001) LeftNeighbourOf [206..325] cm (window002)

(window001) RightNeighbourOf [132..324] cm (window000)

(window002) RightNeighbourOf [206..325] cm (window001)

(window002) RightOf [339..649] cm (window000)

External spatial relations

(concept013) BelowOf [44..1865] cm (sky020)

(sky020) AboveOf [44..1865] cm (concept013)

A preliminary kind of evaluation is to test learnt concepts
on instances from annotated images which have not been
used for training. Table 2 shows false negative recognitions
on these instances. In Table 3 we evaluated the number of
false positive recognitions and added additional random sets
of parts to the test set. A large scale evaluation and compar-
ison with known classification methods will be carried out



Table 2. False negative ratio for hs and hg

Aggregate Instances hs hg

”window array” 18 2 / 0.12 1 / 0.06
”balcony” 14 3 / 0.21 0 / 0.00
”entrance” 9 1 / 0.12 0 / 0.00

Table 3. False positive ratio for hs and hg

Aggregate Instances hs hg

”window array” 54 0 / 0.00 0 / 0.00
”balcony” 61 0 / 0.00 0 / 0.00
”entrance” 68 1 / 0.01 3 / 0.04

soon (albeit the fact that most classfication approaches are
only able to learn single classifier representations, e.g. [18],
[19]).

To give an intuition of the learning result for a whole
knowledge base, we present a graphical representation of
the knowledge base learnt for the eTRIMS domain in Fig-
ure 2.

A learnt knowledge base can be evaluated actively us-
ing the interpretation facilities of the SCENIC system. Its
scene interpretation process is based on the hypothesise-
and-test paradigm. Hypotheses are posed mainly through
part-whole-reasoning, which emphasises the role of con-
ceptual aggregate descriptions. Fig. 3 shows the result of an
interpretation process applying the learnt concept descrip-
tion in Table 1 to an image, where scene objects have been
automatically detected ([20], [21]). The interpretation sys-
tem tries to interpret the scene by finding object aggrega-
tions based on the detected scene objects and the ontologi-
cal aggregate descriptions in the knowledge base. SCENIC
infers four instances of the window array concept and poses
four additional window hypotheses.

Figure 2. Learnt building domain ontology

5.3 Feedback learning

Automatic refinement of learnt concepts is possible
through an interpretation process applying them to anno-
tated pictures which have not been used for training. In
the case of false negative recognition, the learnt concept de-
scription is too specific. As a feedback step, the unrecog-
nised aggregate instance is introduced to the learning pro-
cess as a positive example, generalising the learnt concept
description. In the case of false positive recognition, the
learnt concept description is too general. Therefore the set
of misinterpreted objects is introduced to the learning mod-
ule as a negative example. For both cases another misclas-
sification of the particular instance becomes impossible, re-
gardless which concept hypothesis is chosen from V S after
feedback learning.

6 Conclusions

We have shown that conceptual descriptions for real-
world knowledge-based scene interpretation can be ob-
tained by Version Space Learning. A concept description
language has been presented which allows to express quan-
titative as well as qualitative attributes and relations suitable
for the description of ontological concepts. Employing Ver-
sion Space Learning and our concept representation we are
able to constitute a comprehensive knowledge base of onto-
logical concepts with a multitude of relations between them.
Additionally, the learning process gives us means to assign
confidence values to learnt concepts. The resulting knowl-
edge base is well adapted for later interpretation. Novel
results also pertain to concept selection and concept differ-
entiation for a conceptual knowledge base. Version Space
Learning can be used to obtain maximally differentiated
concepts. The success of learning has been demonstrated
by simple evaluation and scene interpretation experiments
employing the learnt concepts. By making use of anno-
tated images, an automatic feedback learning cycle can be
entered where wrong interpretations serve as correcting ex-
amples. An extended evaluation using a database of several
hundred annotated facade images will be carried out soon.

Figure 3. SCENIC interpretation



Version Space Learning is attractive for stepwise extension
and refinement of conceptual knowledge bases because in-
dividual examples count and mistakes can be easily cor-
rected by feedback learning. As a drawback, standard Ver-
sion Space Learning is highly sensitive to bad teaching. A
single inconsistent example, wrongly annotated as positive
or negative, may cause the version space to collapse. To
cope with this problem we are developing an unsupervised
preprocessing step, clustering the training examples and de-
tecting outliers. In fact, this clustering approach gives us the
ability to introduce examples without a-priori classification.
This yields an approach to semi-supervised learning of on-
tological concept descriptions.
Another interesting topic for further research is to use the
knowledge about near-miss properties of negative examples
to derive an approach to Active Learning. If a model of best
near-miss examples can be generated from a given concept
description, the learner will be able to actively choose ap-
propriate negative examples to learn a most discriminating
concept description. In fact, the learner will transfer his
knowledge about intra-concept similarity to derive a model
for inter-concept discrimination.
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